If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-8t-8=0
a = 1; b = -8; c = -8;
Δ = b2-4ac
Δ = -82-4·1·(-8)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{6}}{2*1}=\frac{8-4\sqrt{6}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{6}}{2*1}=\frac{8+4\sqrt{6}}{2} $
| 3(x-2)(x-2)-6=0 | | -32-8r=-7r+8(8r-4) | | 10-4x=2(x-4) | | 6-4n=34 | | 4x/2x=2x/x | | (4x-5)=70 | | 3-0.6x=-0.3 | | (3x/5)-(3x-1/2)=(11/10) | | x2=57 | | y=5.4(1)+34 | | -22=m-10 | | 2z+9-z=3 | | 11x+10=x+10=100 | | --22=m-10 | | 8n+5=-67 | | $4.10=$6.25=y | | 8n-5=-67 | | 6x+54=12x-18 | | 27=9(x−88) | | 27=9(k−88) | | 27=9(w−88) | | 7k+27=83 | | 4(k+5)=28 | | 360=(2x+10)+(2x+10)+(x+3)+(x+7) | | r^2-2r+32=83 | | 7(w-77)=63 | | −13(6x+18)=10 | | 175x17=2975 | | 3-20=c | | 2(p-1)=14 | | 1/3a-1=15/6a+1/2a | | (8x+5)(5x-1)(4x+6)=180 |